
Introducing PROS 3
by

Willem Scholten

Learning Access Institute

1 PROSbasics - October 21, 2018

PROS 3 Intro
• Some key resources to know about:

• C programming tutorials:

• https://www.cprogramming.com/tutorial/c-
tutorial.html

• https://www.studytonight.com/c/overview-of-c.php

• https://www.youtube.com/watch?
v=nXvy5900m3M&feature=youtu.be

2 PROSbasics - October 21, 2018

PROS 3 Intro

• Online PROS documentation:

• Cortex:

• https://pros.cs.purdue.edu/cortex/index.html

• V5

• https://pros.cs.purdue.edu/v5/index.html

3 PROSbasics - October 21, 2018

PROS 3 Intro

• Functions. C is a language that heavily emphasizes
functions, and knowing how they work is essential to
using PROS. The PROS API <../api/index.html>`_ is a set
of functions, so any time that you want to interact with a
sensor or motor, you’re using functions.

4 PROSbasics - October 21, 2018

PROS 3 Intro

• Header Files. The PROS template (the set of files
automatically created when you start a PROS project)
contains a couple of header files, and it’s recommended
that you make additional header files as you develop your
code. Header files contain the declarations for functions
and global variables (among other things), which is why
the PROS API can be found in API.h. Knowing what code
should go in a header file (.h) or a source file (.c) can be
difficult to determine at first, but it is a very useful skill to
learn.

5 PROSbasics - October 21, 2018

PROS 3 Intro

• printf(). At some point when developing PROS code, you
will likely want to get some feedback on what the value of
a variable is. This is not an exact replacement for a full
debugging utility by any means, but is the standard
method for troubleshooting issues in most languages and
can be used for viewing sensor values or your own
variables’ values. The output from these printf()
statements can be viewed in the terminal by running pros
terminal.

6 PROSbasics - October 21, 2018

PROS 3 Intro
project
| project.pros (used by PROS CLI to know about kernel version and other meta data)
| Makefile (instructs make how to compile project)
| common.mk (helper file for Makefile)
|___src (Source files should go here)
| | auto.c (source fiel for autonomous functions)
| | init.c (source file for initialization)
| | opcontrol.c (source fiel for operator control)
| | Makefile (instructs make how to compile your source files)
|
|___include (Header files should go here)
| | API.h (lets source files know the PROS API functions)
| | main.h (includes API.h and anything else your projects should know project wide)
|
|___firmware (NEVER need to be in here)
| | cortex.ld (instructs linker how to construct binary fields for cortex)
| | libpros.a (Pre-compiled PROS library)
| | STM32F10x.ld (instructs linker how to construct binary fields for cortex)
| | uniflash.jar (Legacy flashing uti)

7 PROSbasics - October 21, 2018

PROS 3 Intro

8 PROSbasics - October 21, 2018

PROS 3 Intro
Pick the right compile target - Cortex or V5

9 PROSbasics - October 21, 2018

PROS 3 Intro

Pick the right compile target - Cortex Give your project a name

10 PROSbasics - October 21, 2018

PROS 3 Intro

11 PROSbasics - October 21, 2018

PROS 3 Intro

Include (header .h) files for your project

Source (.c) files for your project

12 PROSbasics - October 21, 2018

PROS 3 Intro

• By convention, the opcontrol(), autonomous(), and
initialize functions are separated into separate files
(opcontrol.c, auto.c, and init.c). They could be all in the
same file, but it can be helpful to organize your functions
into multiple files to keep things from becoming messy.

13 PROSbasics - October 21, 2018

PROS 3 Intro

int joystickGetAnalog (unsigned char joystick, // the joystick slot to check (1 for master,
 // 2 for partner)
 unsigned char axis // One of the joystick channels on a VEX
 // Joystick: 1, 2, 3, 4, ACCEL_X, or ACCEL_Y

);

Gets the value of a control axis on the VEX joystick. *Returns the value of -127
to 127, or 0 if no joystick is connected to the requested slot(S)

void motorSet (unsigned char channel, // motor channel to set from 1-10
 int speed // new signed speed from -127, to 0, to 127
);

Core opcontrol.c functions:

14 PROSbasics - October 21, 2018

PROS 3 Intro

void operatorControl() {

	 int power;

	 int turn;

	 while (1) {

 power = joystickGetAnalog(1, 2); // vertical axis on left joystick

 turn = joystickGetAnalog(1, 1); // horizontal axis on left joystick

 motorSet(2, power + turn); // set left wheels

 motorSet(3, power - turn); // set right wheels

 delay(20);

	 }

}

Arcade Control Sample

15 PROSbasics - October 21, 2018

PROS 3 Intro

16 PROSbasics - October 21, 2018

PROS 3 Intro

17 PROSbasics - October 21, 2018

PROS 3 Intro

18 PROSbasics - October 21, 2018

PROS 3 Intro

void initializeIO() {
}

void initialize() {
}

void autonomous() {
}

void operatorControl() {
}

field control Autonomous Enabled field control Driver Enabled

solely to set the default pin modes (pinMode()) and port

states (digitalWrite()) of limit switches, push buttons, and solenoids.

This function should initialize most sensors (gyro, encoders,
ultrasonics), LCDs, global variables, and IMEs.

NOTE if no field control /
competition switch, control
is handed to
operatorControl() { }

19 PROSbasics - October 21, 2018

PROS 3 Intro

void autonomous() {

 motorSet(2, 100); // set right wheels

 motorSet(3, -100); // set left wheels - reversed !

 delay(500); // drive for 500ms forward

 motorSet(2, 0); // stop both wheels

 motorSet(3, 0);

}

Autonomous Sample

20 PROSbasics - October 21, 2018

PROS 3 Intro
• PROS 3 kernel upgrade of projects:

(Mostly applies to PROS for V5 - cortex kernel is stable)

• In terminal:

• change to the project directory: cd prosv5-clawbot01

• run: prosv5 c u

Willems-MacBook-Air:prosv5-clawbot02 willem$ prosv5 c u
Upgrading kernel
Applying kernel@3.1.2 [####################################] 100%
Finished applying kernel@3.1.2 to /Users/willem/github/sprobotics/prosv5-clawbot02
Upgrading okapilib
Applying okapilib@3.3.5 [####################################] 100%
Finished applying okapilib@3.3.5 to /Users/willem/github/sprobotics/prosv5-clawbot02
Willems-MacBook-Air:prosv5-clawbot02 willem$

21 PROSbasics - October 21, 2018

GitHub and GIT
by

Willem Scholten

Learning Access Institute

22 PROSbasics - October 21, 2018

gitHUB Access

• Sample code repositories for learning the Cortex (and
later the V5) can be cloned from the following URL:

• https://github.com/sprobotics

23 PROSbasics - October 21, 2018

gitHUB Access
Goto: https://github.com

Pick username,
add your email
and pick a
password

24 PROSbasics - October 21, 2018

gitHUB Access

25 PROSbasics - October 21, 2018

gitHUB Access

Pick the free
plan

26 PROSbasics - October 21, 2018

gitHUB Access

Just answer
what makes
sense

27 PROSbasics - October 21, 2018

gitHUB Access
Create Repositories as needed or via Window gitHUB client

28 PROSbasics - October 21, 2018

gitHUB Access

You can create an organization -
being your team, and then add
others to the repository to
submit code changes.

29 PROSbasics - October 21, 2018

gitHUB Access

• Git — provides source code control

• gitHUB — host the repositories, including documentation
for your team and beyond

30 PROSbasics - October 21, 2018

gitHUB Access

• git - source code control is a
version control system designed to track
changes in source code and other text
files during the development of a piece of
software. This allows the user to retrieve
any of the previous versions of the
original source code and the changes
which are stored.

31 PROSbasics - October 21, 2018

gitHUB Access

• A repository, or Git project, encompasses the entire
collection of files and folders associated with a project,
along with each file’s revision history.

• The file history appears as snapshots in time called
commits, and the commits exist as a linked-list
relationship, and can be organized into multiple lines of
development called branches.

32 PROSbasics - October 21, 2018

gitHUB Access

Create PROS 3 Project

Create gitHUB repository

write code using PROS 3

commit changes to gitHUB repository

Simple workflow of code development using gitHUB

This method works well when it is
a single person working on the
code, it allows you to track your
changes, publish simple releases
(v1.0, 1.01 etc) to track your code
progress.

33 PROSbasics - October 21, 2018

gitHUB Access

• Using gitHUB with multiple developers working on the
same code base - this is where gitHUB / GIT’s strength
comes in, allowing each developer to work on the code
base independently - branches - and then merging all
the code together to a new agreed upon master version
to then be released.

• gitHUB helps with code conflict resolutions - two or more
developers submitting conflicting changes which need to
be resolved.

34 PROSbasics - October 21, 2018

gitHUB Access
Create PROS 3 Project

Create gitHUB repository (master)

branch for team member #1

commit changes to branch repository

team members check out a branch

branch for team member #2

commit changes to branch repository

write code using PROS 3 write code using PROS 3

Team members work on their
clone of the master code, make
changes, and check it in to
gitHUB in their branch code tree.

35 PROSbasics - October 21, 2018

gitHUB Access

Create gitHUB repository (master)

merge branches into master

branch #1 branch #N

During the merge into the master,
if their are conflicts between
branches, they must be resolved
first prior to the merge being able
to succeed.

The new master after merge will
represent all agreed upon code
merges.

36 PROSbasics - October 21, 2018

gitHUB Access

• Once branches are merged into the master, one of two
things can happen:

• team members check out a new branch based on the
newly created master

• a release is created

37 PROSbasics - October 21, 2018

gitHUB Access
• When to create a release:

• When there is solid agreed upon code base which can
be handed over to testing

• Code should always be released for deployment to a
competition day robot, so that any observations and
new code designs can be implemented on a well
defined check point during the development cycle.

• Release are solid checkpoints you can roll-back to

38 PROSbasics - October 21, 2018

gitHUB Access
• A release:

• A release has a Major number and Minor Number, for
example V1.0 - indicating first full release based on the
specification.

• Code fixed or enhanced based still on the same
specifications, become minor release increments, for
example V1.1, V1.2 or V1.0.1, V1.0.2

• Code which is written as a subsequent release based on
new specification should increase the Major number, for
example: V2.0

39 PROSbasics - October 21, 2018

gitHUB Access

• Learning more:

• https://lab.github.com/courses

• https://services.github.com/on-demand/downloads/
github-git-cheat-sheet.pdf

•

40 PROSbasics - October 21, 2018

